Human Dermal Fibroblasts

Techniques to Culture and Assess HDF Cells In Vitro

Assess the survival and function of HDF cells in vitro

Test for viability

Live/Dead Fluorescent Assay: assess the impact of ethanol on HDF cells

Proliferation

- Anti-PCNA staining: examine the effect of media conditions on cell cycle and proliferation
- Cell Proliferation: assess the effects of serum on growth and replication

What is the extent of ethanol's effect?

- HDF cells dyed with a solution of 2 µM calcein AM and 4 µM EthD-1
- Exposed to three different conditions:
 - A. PBS rinse, dye solution (control)
 - B. 250 µL ethanol, dye solution
 - C. PBS rinse, 2 drops ethanol, dye solution
- Cells examined qualitatively under fluorescent microscope

Do media conditions affect cell cycle?

Anti-PCNA staining

- HDF cells incubated in DMEM with 1%, 5%, or 10%
 FBS and 1% antibiotic; fixed in formalin
- 1° Ab: Anti-PCNA Mouse IgG
- 2° Ab: Anti-mouse IgG tagged with HRP
- Two Dyes
 - AEC chromagen reacts with HRP to stain red
 - Hematoxylin non-specific, counterstains blue
- Three Controls
 - Control 1: 1° Ab, buffer
 - Control 2: buffer, 2° Ab
 - Control 3: blocking buffer

Do media conditions affect cell cycle?

Quantitative Cell Proliferation

- ○Day 0: HDF cells seeded (~3250 cells/mL)
- Cells incubated in DMEM with 1%, 5%, or 10% FBS and 1% antibiotic
- Object Days 2, 5, and 7: three wells from each condition were trypsinized
- Cells counted via Coulter Counter

Fluorescent Assay distinguishes between live and dead cells

Condition	Color	Morphology	
A	Green, with sparse red nuclei	Long, thin, and elongated	
В	ALL red, no green	Small, rounded nuclei, some cytoplasm visible	
С	Red and green present in regions with little overlap	Green cells long and thin, small, round red nuclei	

- Fig. A: viable cells stained with calcein AM (488 nm)
- Fig. B: dead nuclei stained with EthD-1 (543 nm)
- All wells were ~95% confluent
- http://bmc.ub.uni-potsdam.de/1465-9921-6-40/F1.htm

PCNA Assay tags dividing cells

	1%	5%	10%	Control 1	Control 2	Control 3
	serum	serum	serum			
Confluency	70-85%	90%	80-90%	50-60%	60%	60-70%
Color	25% red 75% blue	40-50% red 50-60% blue	75-80% red 20-25% blue	All cells stained blue	All cells stained blue	All cells stained blue

- Morphology consistent across all wells: long, elongated, with presence of pseudopodia
- More cells undergo cell division at once in higher concentrations of serum

Cell division stimulated by higher serum concentrations

- Cells grow exponentially
- Doubling times:
 - 1% FBS: 3.74 days
 - 5% FBS: 1.60 days
 - 10% FBS: 1.38 days

Higher Serum Concentrations Result in Faster Proliferation Rate

Final cell concentration differs among media types

- The differing growth rates among serum concentrations result in final cell counts that are statistically significantly different from one another.
- 1-Factor ANOVA, p < 2.56 x 10⁻⁸

Day 7 Concentrations (cells/mL)

1% serum	5% serum	10% serum		
15400	61120	105860		
10760	62580	109640		
11640	67060	106320		

Cell Proliferation consistent with PCNA results

- Two-fold increase in growth rate from 1% to 5% serum
 - Cell Proliferation: Doubling time decreased by 57%
 PCNA: Fraction of dividing cells doubled
- 10% serum marginally increases the growth rate
 - Cell Proliferation: only represents 15% increase
 - PCNA: Fraction of dividing cells increases by 50%

Key Results

- Live/Dead Fluorescence Assay a useful technique for determining cell viability postexposure to toxic substance
- Cells exhibit exponential growth
- Increasing serum concentration increases rate of proliferation due to presence of extra growth factors and nutrients
- Increasing concentration past certain point has no effect – cells reach saturated rate of division